
Quick & Easy Real-world Control for PCs, copyright 1997, 1999 by Jan Axelson 1

This article was first published in the July 1997 issue of Nuts & Volts magazine. For more
about Jan’s books and articles, visit Lakeview Research on the web at www.lvr.com.

Quick & Easy Real-world Control
for PCs

copyright 1997, 1999 by Jan Axelson

BASIC has long been a favorite programming language for real-world projects that access
the world beyond a computer’s keyboard, display, and the usual assortment of peripherals.
If you have a project that involves flipping switches, reading sensors, spinning motors, or
controlling or watching the outside world in a unique way, a BASIC program and an avail-
able port can often do the job.

If your program will run under Windows, you can create it with Microsoft’s Visual Basic,
whose ease of use and many abilities have made it one of the PC’s most popular program-
ming languages. But there’s one hitch - unlike other BASICs, Visual Basic includes no
way to read and write directly to ports. The solution is to use a DLL (dynamic linked
library) that enables any Windows 3.x or Windows 95 program to access ports.

In this article, I’ll show how to use Visual Basic to access the PC’s standard parallel port as
well as ports on custom I/O cards. I’ll also present an example program to get you started.

What’s a Port?

One of the main jobs of every PC is to move information about. The CPU (the brains
inside the PC) understands two types of locations for data: memory and ports. The CPU
uses different instructions and addressing to access each.

Memory includes the system RAM, which provides temporary storage for currently run-
ning programs, application files, and other information that the system may need quick
access to.

The CPU uses ports to communicate with just about everything else, including standard
components like drives, displays, modems, and printers, as well as custom and homebuilt
devices. Each device uses one or more port registers, which are storage locations that both
the CPU and the device can read and write to. Every PC has at least 1024 possible register
addresses, from 0 to 3FFh, though many of these are reserved for standard components.

Quick & Easy Real-world Control for PCs, copyright 1997, 1999 by Jan Axelson 2

How to Access Ports

For many common devices, Windows has built-in routines that simplify communications.
For example, an application may call Windows’ StartDoc function to send a file to a
printer. The application doesn’t have to concern itself with knowing how to communicate
with specific printers, because the operating system handles the details.

If you’ve built your own device that connects to a port, there are no built-in routines; you
have to write your own. You can do so if your programming language includes the ability
to read and write to ports. Other BASICs, including QuickBasic and QBasic for DOS,
include Inp and Out keywords for this purpose. For example, this QBasic statement writes
the value 55h to a port at 378h:

Out &h378, &hA5

(In this article, I use the conventional trailing h to indicate a value expressed as a hexadec-
imal number, while the BASIC code requires a leading &h.)

If you prefer decimal numbers, the statement looks like this:

Out 888, 165

This statement reads the value of a port at 379h into the variable ByteRead:

ByteRead = Inp(&h379)

Or in decimal:

ByteRead = Inp(889)
Introducing the DLL

Under Windows 95 and Windows 3.x, you can use a DLL to enable your Visual Basic pro-
grams to access ports just as in other BASICs. The DLL is a file that contains program
routines for reading and writing to ports.

The DLL itself must be stored on the user’s system, and an application that uses the DLL
must include a declaration for each routine it calls. The declarations tell the operating sys-
tem where to find the routines.

When the application runs, the DLL loads into system memory and the application may
call any of the declared routines. The Visual-Basic statements that call the DLL’s routines
are identical to QBasic’s Inp and Out statements.

Where can you find a DLL for port I/O? I’ve made two DLLs available for free download-
ing on my web site at http://www.lvr.com. Inpout16.dll is for use with 16-bit programs,
and Inpout32.dll is for use with 32-bit programs. Although the program code to call the
Inp and Out routines is identical for both types, each requires a different DLL and declara-
tions.

Quick & Easy Real-world Control for PCs, copyright 1997, 1999 by Jan Axelson 3

Which DLL to use depends on which version of Visual Basic you’re using. A 32-bit pro-
gram requires Windows 95, while a 16-bit program may run on Windows 3.x or Windows
95. Programs created with Visual Basic Version 3 (VB3) are 16-bit. The Professional edi-
tion of Version 4 (VB4) includes both 16-bit and 32-bit versions, while the Standard edi-
tion of Version 4 and all editions of Version 5 are 32-bit only.

Using the DLL

The parallel printer port is one of the standard ports found on every PC, so it’s a natural
choice for testing and experimenting with the Inpout DLLs.

Although originally intended for printer communications, the parallel port has also
become popular as an interface to many other devices, including homebuilt projects of all
types. The basics of the parallel port are covered in many places, so this time around I’ll
include only the essential information for accessing a port with my example program. (See
www.lvr.com for more on parallel-port access and interfacing.)

Most parallel ports are located at a base address of 378h, 278h, or 3BCh. In Windows 95,
to find the base address of a parallel port, open the Control Panel, then click on System,
Device Manager, Ports, select an LPT port, then click the Resources tab. The addresses of
installed parallel ports are also displayed in the CMOS setup screens that you can access
on bootup.

Figure 1 is the user screen for a program that tests the DLL’s operation. Because some pre-
fer hexadecimal numbers while others prefer decimal, the program allows a choice. To use
the program, you enter the address of your port in the Port Address text box. To write a
value to the port, enter the value in the Write text box and click the Write command but-
ton. To read the port, click the Read command button and the Read text box will show the
value read.

Figure 1. Use this Visual-Basic program to experiment with reading and writing to the
standard parallel port and custom I/O ports.

Quick & Easy Real-world Control for PCs, copyright 1997, 1999 by Jan Axelson 4

A caution: this program allows you to attempt to write to any port address. Under Win-
dows, many system-critical ports are protected from unauthorized access, but the chance
remains that writing to a port can crash your system, or in rare cases even cause permanent
damage. Writing to a standard parallel-port address is safe if nothing is connected to the
port. Disconnect the cable to any device connected to a port before you experiment with
the port. Reading of any port will do no harm.

At the end of this article, Listing 1 has the code for the example program, and Listing 2
has declarations for the DLLs.

The program was created with VB4, and will run under either the 16-bit or 32-bit edition
of VB4, and in later versions. To run in VB3, you need to edit the declarations so they
include only the lines between #Else and #Endif, and in the remaining two declarations
delete the word Public and the underscore (line continuation) characters. In VB3, each
declaration must be entered as a single line, with no carriage returns or line feeds.

The DLL (either inpout16.dll or inpout32.dll) must reside on any system that runs the pro-
gram. Windows will search for the DLL in the following locations: the default Windows
directory (usually \Windows), Windows’ System directory (usually \Windows\System),
and the project’s working directory. (When you run the program in the Visual Basic envi-
ronment, the working directory is your Visual-Basic directory.) Copy the appropriate
DLL into any of these locations before you run the program. If you want to store the DLL
in a different location, include its path in the Declarations.

Parallel Port Experiments

For a simple test of the example program, you can enter the base address of your parallel
port, write a value, then read it back. The value shown should match logic levels of the
Data bits (D0-D7) on the connector. Figure 2 shows the pin locations for each of the paral-
lel port’s signals.

All parallel ports use at least three port addresses. In addition to reading and writing to the
port’s base address, or Data port, you can read the Status port at base address + 1. (For
example, with a base address of 378h, the Status port is at 379h.) Bits 3 through 7 of the
Status register (S3-S7) are inputs. Bit 7 reads the inverse of the logic state at the connector.
So if you read 78h, all five inputs are high at the connector. Bits 0-2 are usually unused
and read as 0’s. Writes to the Status port are ignored.

You can also read and write to the Control port, at base address + 2. (For a base address of
378h, the Control port is at 37Ah.) Bits 0 through 3 of the Control register (C0-C3) are
outputs. Bits 0, 1, and 3 in the Control register are the inverse of the logic states at the con-
nector. If you read 04h, all four bits are high at the connector. If you read 0Bh, all four bits
are low. On some ports, the Control bits are open-collector-type outputs with pull-up resis-
tors. These can be used to read external signals if you first write 4 to the Control port to
pull the outputs high.

Quick & Easy Real-world Control for PCs, copyright 1997, 1999 by Jan Axelson 5

Two other bits on the Control port don’t appear on the connector, but can affect port oper-
ation. On bidirectional ports, bit 5 determines the direction of the Data port. If you have a
bidirectional port, be careful with this bit! The default is 0, which configures the Data bits
as outputs. Setting the bit to 1 disables the Data outputs and allows you to use the port to
read external signals. (In rare cases, bit 7 performs this function.)

Bit 4 determines whether or not hardware interrupt signals (from Status port bit 6) are
passed on to the interrupt controller. The default is 0, disabled. Just setting the bit to 1 usu-
ally has no effect, however, because the interrupt must also be enabled at the system’s
interrupt controller. But it’s best to keep this bit at 0, just to be safe, unless you intend to
use the hardware interrupt.

In short, you can write values from 0 to Fh (15 in decimal) to the Control port, and the cor-
responding outputs will change, while the upper bits remain zeros.

To find out if you have a bidirectional Data port, write 20h to the Control port to bring bit
5 high. Then write a couple of values to the Data port and read each back. If the values
don’t match what you wrote, the Data outputs are disabled and you should be able to read
external logic signals on the Data lines. If the values do match what you wrote, the Data
outputs are still enabled and you can’t use the port to read external signals.

No matter what changes you make to a port’s registers, rebooting restores the original con-
figuration.

Figure 2. Locations of the 17 signals on the parallel port’s D-sub connector, including
Data bits D0-D7, Status bits S3-S7, and Control bits C0-C3. An overbar indicates a signal
that is the complement, or inverse, of the corresponding bit in the PC’s port register.

Quick & Easy Real-world Control for PCs, copyright 1997, 1999 by Jan Axelson 6

Accessing Other Ports

You can also use the Inpout DLLs to access ports on I/O cards that have custom ports.
These are available from many vendors, in many configurations. Advantages are that you
usually get more than the parallel port’s 17 bits, and you don’t have the hassle of dealing
with the standard port’s inverted bits. Some cards have analog inputs or outputs, with the
converter circuits on-board, or features such as isolated outputs or relay-driver circuits. A
card with built-in features like these can simplify your design work.

Custom I/O cards may use any unused port addresses in your system. Address ranges that
are free for use in many systems include 250-277h, 280-2AFh, 300-377h, and 390-39Fh.

Developing Your Application

Once you have the DLL tested and working on your port, whether it’s the standard port or
a custom one, you’re ready to design circuits to connect to the port, and the software to
control them. The Sources box includes resources to get you started.

Jan Axelson is the author of Parallel Port Complete: Programming, Interfacing, and
Using the PC’s Parallel Printer Port (ISBN 0-9650819-1-5). You can contact Jan by email
at jaxelson@lvr.com. To download the Inpout DLLs and source code for the example pro-
gram in this article, visit http://www.lvr.com on the Web.

Another Way to Access Ports

Both Windows 3.x and Windows 95 allow software to read and write directly to ports.
However, unlike DOS, Windows is a multi-tasking operating system, which means that a
user may run multiple applications at once. If two programs try to access the same port at
the same time, for different purposes, the result can be a mess!

For this reason, Windows makes it possible to manage accesses to a port from any applica-
tion. A virtual device driver, or VxD, contains code that can read and write to a port. The
VxD also can register the port with the operating system and specify whether or not it will
share the port with other applications. If another program or driver attempts to access the
port, the operating system will know whether to allow access or to inform the requesting
software that access is blocked.

Sounds great, right? However, writing VxDs isn’t for everyone. It requires an extensive
knowledge of system hardware and Windows programming, plus expertise in assembly-
language or C programming. Most device-driver writers use a variety of special tools,
including Microsoft’s Device Driver’s Kit. There’s no way to write a VxD in Visual Basic.

If your program communicates with a port that other applications have no reason to
access, and if you’re running Windows 3.x or Windows 95, direct port I/O is a simple and

Quick & Easy Real-world Control for PCs, copyright 1997, 1999 by Jan Axelson 7

safe enough way to access the port. If you want to use a VxD to access a port, a quick
solution is to buy one of the OCX’s or other controls designed for this purpose. (See
www.lvr.com for vendors.) There are also controls designed for use with Windows NT,
which prohibits direct port accesses, and for using the parallel port’s hardware interrupt.

Using an OCX in a program is straightforward. You install the OCX on your system, place
the OCX on a form in your Visual-Basic program, and configure it with a range of port
addresses and other optional information. You can then use Visual Basic statements to
read and write to the ports. When the program runs, the port accesses are handled by the
OCX, which communicates with a VxD (Windows 95) or a kernel-mode driver (Windows
NT).

For Delphi Fans

If Borland/Inprise’s Delphi is your programming language of choice, you can access ports
without using a DLL. In Delphi 1.0, which creates 16-bit programs, use Port to read and
write to ports.

Delphi 2.0 and higher, for creating 32-bit programs, have no port functions built-in, but
you can access ports using in-line assembly code in your programs.

This code writes the value 55h to a port at 378h:

var
 ByteToWrite:byte;
 PortAddress:word;
begin
 PortAddress:=$378;
 ByteToWrite:=$55;
 asm
 push al
 push dx
 mov dx,PortAddress
 mov al,ByteToWrite
 out dx,al
 pop dx
 pop al
 end;
end;

Quick & Easy Real-world Control for PCs, copyright 1997, 1999 by Jan Axelson 8

This code reads the value of a port at 379h into the variable ByteRead:

var
 ByteRead:byte;
 PortAddress:word;
begin
 PortAddress:=$379;
 asm
 push al
 push dx
 mov dx, PortAddress
 in al,dx
 mov ByteRead, al
 pop dx
 pop al
 end;
end;

You can use this same technique with any programming language that supports in-line
assembly code. Delphi programmers can also use the OCX’s described in “Other Ways to
Access Ports” in this article.

Sources

If you want to learn more about how to use the parallel port and custom I/O ports in your
own projects, visit Parallel Port Central (http://www.lvr.com) for tutorials, program code,
and links to resources of all kinds.

Quick & Easy Real-world Control for PCs, copyright 1997, 1999 by Jan Axelson 9

Option Explicit
Dim PortAddress%
Dim Hexadecimal%
Dim ByteToWrite%
Dim ByteRead%
Dim ValueToWrite$
Dim ValueRead$
Dim PortAddressAsText$

Private Function fncConvertValueToText$(ValueToCon-
vert%)
‘Converts an integer to a string
‘that displays the integer’s hex or decimal value.
If Hexadecimal Then
 fncConvertValueToText = Hex(ValueToConvert)
Else
 fncConvertValueToText = Str(ValueToConvert)
End If
End Function

Private Function fncDecimalToHex$(ValueToConvert$)
‘Converts a string’s decimal value to hexadecimal.
fncDecimalToHex = Hex(Val(ValueToConvert))
End Function

Private Function fncGetValueOfString%(StringToConvert$)
‘Returns the hex or decimal value of a string.
If Hexadecimal Then
 fncGetValueOfString = (Val(“&h” & StringToConvert))
Else
 fncGetValueOfString = Val(StringToConvert)
End If
End Function

Listing 1. Source code for Figure 1’s program. Page 1 of 3.

Quick & Easy Real-world Control for PCs, copyright 1997, 1999 by Jan Axelson 10

Private Function fncHexToDecimal$(ValueToConvert$)
‘Converts a string’s hexadecimal value to decimal.
fncHexToDecimal = Str(Val(“&h” & ValueToConvert))
End Function

Private Sub cmdReadPort_Click()
‘Read the port and display the value read
‘in the Read text box.
ByteRead = Inp(PortAddress)
txtReadPort.Text = fncConvertValueToText(ByteRead)
End Sub

Private Sub cmdWriteToPort_Click()
‘Get the value in the Write text box and write it
‘to the port.
ByteToWrite = fncGetValueOfString(ValueToWrite)
Out PortAddress, ByteToWrite
End Sub

Private Sub Form_Load()
‘Initial settings.
optNumberBase(1).Value = True
txtPortAddress.Text = 378
End Sub

Listing 1. Source code for Figure 1’s program. Page 2 of 3.

Quick & Easy Real-world Control for PCs, copyright 1997, 1999 by Jan Axelson 11

Private Sub optNumberBase_Click(Index As Integer)
‘The user may read and display values as decimal
‘or hexadecimal numbers.
‘When the number-base selection changes,
‘change the display to match.
If optNumberBase(1) = True Then
 Hexadecimal = True
 txtPortAddress.Text = _
 fncDecimalToHex(PortAddressAsText)
 txtWriteToPort.Text = fncDecimalToHex(ValueToWrite)
 txtReadPort.Text = fncDecimalToHex(ValueRead)
Else
 Hexadecimal = False
 txtPortAddress.Text = _
 fncHexToDecimal(PortAddressAsText)
 txtWriteToPort.Text = fncHexToDecimal(ValueToWrite)
 txtReadPort.Text = fncHexToDecimal(ValueRead)
End If
End Sub

Private Sub txtPortAddress_Change()
‘Get the value of the port address in the text box.
PortAddressAsText = txtPortAddress.Text
PortAddress = fncGetValueOfString(PortAddressAsText)
End Sub

Private Sub txtReadPort_Change()
‘Store the contents of the text box in ValueRead.
ValueRead = txtReadPort.Text
End Sub

Private Sub txtWriteToPort_Change()
‘Store the contents of the text box in ValueToWrite.
ValueToWrite = txtWriteToPort.Text
End Sub

Listing 1. Source code for Figure 1’s program. Page 3 of 3.

Quick & Easy Real-world Control for PCs, copyright 1997, 1999 by Jan Axelson 12

‘Declarations for Inp and Out routines for port I/O
‘There are two sets of declarations,
‘one for 32-bit programs and the other
‘for 16-bit programs.

‘The appropriate DLL (inpout32.dll or inpout16.dll)
‘must be stored in one of the following directories
‘on the user’s system: \Windows, \Windows\System,
‘or the current working directory.

#If Win32 Then
 Public Declare Function Inp Lib “inpout32.dll” _
 Alias “Inp32” _
 (ByVal PortAddress As Integer) As Integer
 Public Declare Sub Out Lib “inpout32.dll” _
 Alias “Out32” _
 (ByVal PortAddress As Integer, _
 ByVal Value As Integer)

#Else
 Public Declare Function Inp Lib “inpout16.Dll” _
 Alias “Inp16” _
 (ByVal PortAddress As Integer) As Integer
 Public Declare Sub Out Lib “inpout16.Dll” _
 Alias “Out16” _
 (ByVal PortAddress As Integer, _
 ByVal Value As Integer)
#End If

Listing 2. Include these declarations in any Visual Basic project that uses an Inpout DLL.

